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ABSTRACT 
 

 This work covers the behavior of crimped cold-formed steel C-section beams 

under flexural loading. The specific beam shape that was tested was 600S162-54. The 

crimps were placed in the flange and web of the beam to curve the beam. Three crimp 

sizes were tested: 0.5 degree, 1.5 degree, and 3.0 degree. In construction practice, the 

company placed a reinforcing steel band that overlapped the crimped areas to restore 

strength. These various crimp degrees were tested to evaluate how much strength, if any, 

was lost. The reinforcing steel band was tested simultaneously with the beam to evaluate 

if its presence significantly increased the strength and ductility of the beam. The beams 

were tested with the crimps on both the compression flange and the tension flange to 

cover updraft and other upward vertical loads. Straight beams without crimps were used 

as the control case, and both crimped and control specimens were evaluated for their 

moment capacity, deflection limits, and the effective moment of inertia of the beam. 

 After testing, tables comparing the crimped beams’ moment and deflection 

capacity and their effective moment of inertia compared to straight beams were created. 

Based on the series of flexural tests, the deeper the crimp geometry extended into the 

compression zone of the beam, the greater the loss of moment capacity, and the lower the 

effective moment of inertia. Tables 5.1 through 5.5 along with Equations 2 through 7 are 

meant to aid in the safe design of crimped cold-formed steel beams. Testing Standards 

such as ASTM A370 and the SSMA Cold-Formed Steel Flexural Members were 

followed, but with minor deviations because of the unique geometry of the crimped 

beams.  
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NOMENCLATURE 

SYMBOL DESCRIPTION 

A Cross-sectional area of the curved beam 

Am Integral of the change in area over the radius of the beam 

B Sum of primary and secondary crimp dimensions 

C Sum of primary, secondary, and Tertiary crimp dimensions  

E Modulus of Elasticity 

I Effective Moment of Inertia at service 

L Member Length 

Mc Moment capacity of beam with crimp in compression 
flange 

Mm Ultimate Moment Capacity of Crimped Beam 

Ms Straight Beam Ultimate Moment Capacity 

Mt Moment capacity of beam with crimp in tension flange 

Mult Ultimate Applied Moment 

a Primary crimp Dimension 

b Secondary Crimp Dimension 

b’i Effective width of the inner flange of the beam 

b’o Effective width of the outer flange of the beam 

c Tertiary Crimp Dimension 

d Beam depth 

dc Compression zone depth 

r Radius of curvature of the beam 

ri Radius of curvature of the innermost fiber 

ro Radius of curvature of the outermost fiber 

tw Thickness of the web 

y Moment arm 

δ Member service deflection  

σt Tension stress in the beam 

σc Compression stress in the beam 

θc Degree of crimp in compression flange 

θt Degree of crimp in tension flange 

%B % of dc that is occupied by B 
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1. INTRODUCTION 

 The subject of this thesis was the behavior of crimped cold-formed steel C-section 

beams. The beams were created by placing a series of crimps in the top or bottom flanges 

of the members. These crimped members are used for various curved shaped forms, due 

to their economic benefits and ease in fabrication. Such members have been used in 

archways, domes, and other architectural and decorative forms.  The number of crimps 

and the degree of bend differ depending on the length of the span, the amount of loading 

required, and the desired architectural shape. The different degree bends that were tested 

include 0.5, 1.5, and 3.0. These bend degrees were chosen by the manufacturer for 

testing. A reinforcing band was also sometimes placed over the crimped section in an 

attempt to recover lost capacity from the crimping process. This research focused on 

testing the three degree bends previously mentioned as well as testing the crimped beams 

with and without the reinforcing band. Only the 600S162-54 beam cross-section was 

tested. 

1.1. OVERVIEW OF EXPERIMENT 

 A series of flexural tests were performed using a four-point bending 

configuration. A diagram of this configuration can be seen in Figure 1.1. The test method 

provided a visual analysis of the stresses in the flanges of the member. Testing for both 

compression and tension in the crimped flange was accomplished by placing the crimp on 

the top of the beam for compression flange testing, and on the bottom of the beam for 

tension flange testing. The reason for the compression flange testing was to account for 

the presence of uplift forces that would place the crimped flange of the beams in 

compression. Besides uplift forces, the crimp could be placed in the compression flange 
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The particular subject of study of these crimped cold-formed steel beams was the 

reduction in moment capacity and serviceability as a result of the crimping process. The 

variables in the study were: the degree of the bend, the presence of a reinforcing strap, 

and if the crimp is on the compression or tension flange. The reduction in moment 

capacity that was caused by these variables was tabulated, and strength reduction factors 

were tabulated for safe design. The serviceability of the crimped beams was also 

assessed, and whether further restrictions were necessary to limit service deflections. The 

serviceability of the beams was evaluated for design by calculating the effective moment 

of inertia of the crimped beams. Thus, the following C-section configurations were 

tested: 

 Straight member 

 Curved member with crimp in tension 

 Curved member with crimp in compression 

 Curved member with crimp in tension reinforced by a strap 

 Curved member with crimp in compression reinforced by a strap 

1.2. OVERVIEW OF ANALYSIS 

 The data that was gained from the experiments was analyzed to calculate the total 

moment that was applied to each C-section beam at failure. The maximum moment for 

the straight beams were considered the baseline for comparison. A ratio of the moment 

capacity for crimped beams to straight beams was calculated for each configuration. This 

ratio was used to create strength reduction factors for the capacity of the various crimp 

degrees while taking into account if the crimp was in compression or tension. The 

crimped beams’ serviceability was also analyzed, using the applied loads and deflections 
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to calculate the effective moment of inertia of the crimped beams. The effective moment 

of inertia was tabulated for each beam and was intended for use in the serviceability 

checks for beam design. A table was created which shows how the beam types perform 

against deflection requirements L/180, L/240, and L/360 at service level loads. Service 

level loads were defined as loading that resulted in 60% of the ultimate moment capacity. 

The deflections in the serviceability analysis were conservative results compared to in-

place construction. The experiment was conducted using rollers, but in construction and 

design practice, semi-rigid connections are used. Pinned and fixed connections would 

have experienced smaller deflections than those seen in this experiment. Once a 

correlation was seen between the ultimate moment capacity and the values of certain 

dimensions of the crimp, equations were created to predict the capacity of intermediate 

crimp degrees. Lastly, in an attempt to compare the moment capacity of the crimped 

beams to that of curved beams, two different methods for evaluating the moment capacity 

of curved beams were demonstrated. The results yielded unreasonable values when 

compared to the experimental ultimate moment capacities of crimped beams with similar 

radii.  
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2. LITERATURE REVIEW 

 The literature review for this thesis yielded some related works. There have been 

previously related studies done on the behavior of curved beams, and this information can 

be found in Advanced Mechanics of Materials [Boresi 2003]. The challenge is that the 

theories address continuous curved beams. The beams in this experiment were made to 

curve by a crimping process, but the beam was straight between the crimped areas. 

Similar research has been done in the past on corrugated steel panels [Jorgenson 1973] 

[Jorgenson 1982] which are created by a similar process. These panels are used as 

structural siding for buildings such as barns and other low importance structures. These 

studies of corrugated panels; however, do not address the behavior of crimped beams. 

There has also been research done on cold-formed steel curved panels [Sivakumaran 

2000] [Xu 2001], but these works, while helpful, are not applicable to the behavior of 

crimped beams. The Society for Automotive Engineers have also done research on curved 

beams, in which more specific, less general, curved geometries were analyzed. The 

Winkler-Bach equation was also created to predict the moment capacity of curved beams, 

but none of these theories are applicable to the special geometry of crimped beams. The 

loading and geometry of these structural members is unique to this particular research. 

Searching for prior studies of crimped cold-formed steel beams has yielded minimal 

related research. 
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3. METHODOLOGY 

 The bending of curved beams was not explicitly covered by any particular testing 

standard, but because the curvature of the beams was limited by the length of the 

specimens, testing standards for straight beams were easily adapted for use with crimped 

beams. ASTM A370 was used for testing definitions and methodology, as well as for the 

coupon testing which verified the strength of the steel. The testing setup used for the 

bending test of the beams was hydraulic and complies with the requirements in ASTM 

E4. The machine operated by specifying a deflection rate for the beams, which it then 

followed while measuring the applied load. The Steel Stud Manufacturers Association 

(SSMA) Cold-Formed Steel Flexural Members Test Procedure was used as the basic 

guideline for the entire setup of the test, although variations were made because of the 

crimps which are detailed below. The SSMA guideline specified the use of C-section 

beams and outlined the proper interval of the bracing angles, depending on the design 

parameter that was being tested. Using this procedure, two beams were tested per 

specimen, which allowed for a shorter testing phase. 

3.1. TENSILE COUPON TEST SETUP 

 The tensile coupon tests were completed following the specifications in ASTM 

A370. The zinc coating was removed using a 10% solution of hydrochloric acid. The 

coupons were cut from one of the beams after the beam was tested. The portion of the 

beam that the coupons were cut from was not in the pure moment zone, and therefore had 

not failed during beam testing. All of the beams were produced from the same coil of 

steel, so each beam had approximately the same strength properties. The tension tests 

were performed on an MTS 880, which was displacement controlled, and the applied 
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screw attached to the exterior sides of each beam under each of the load points to restrict 

web crippling. Wooden blocks were attached with screws to the interior of the beams 

under the load points to reduce local buckling. The beams were tested using the simple 

span condition. This was accomplished by placing rollers at both ends of the member, and 

using clamps to restrain the beam to the rollers. Because of this connection configuration, 

the connection was idealized as a roller. The beams had a four-point loading 

configuration. The reason for the 4-point loading configuration was to create the pure 

moment zone in the interior of the beam’s span. This pure moment zone, ideally, had no 

shear stress present, so the effects of shear were neglected. An example of the typical test 

set-up for straight and curved beams can be seen in Figures 3.4.  This four-point 

configuration creates a constant moment region in the mid-section of the beam between 

the two point loads. 
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4. RESULTS  

 The results of the experimentation showed that the degree of crimp greatly 

affected the ultimate moment capacity and the effective moment of inertia of the beam. In 

general, a larger degree of crimp meant a greater reduction in capacity, with the exact 

behavior differing when the crimp was placed in the compression or tension flange. 

When the crimp was in the compression flange, the decrease in the ultimate moment 

capacity of the beam began at more rapid rate than if the crimp was in the tension flange. 

The presence of the reinforcing band increased the moment capacity of the beams 

between approximately 2%-7%, with the single exception being the 1.5 degree crimp in 

compression which saw a 33% increase in its moment capacity. Another exception was 

the 0.5 degree crimp in compression with the reinforcing band which experienced a 2% 

decrease in its moment capacity. The accompanying graphs in the Appendix are "Moment 

vs. Deflection" instead of "Load vs. Deflection" because the moment arm varied slightly 

between 24 inches and 22.5 inches due to changes in the setup between experiments. To 

account for this variance of the moment arm, the applied moment was calculated to more 

accurately represent the moment capacity of the beams.  

4.1. TENSILE COUPON TESTS 

 The coupons yielded above 2,000 lb. of force, and ruptured at roughly 2,800 lb. of 

force. After yielding, the coupons had a large amount of deflection that continued until 

strain hardening began, and then the strength increased once again until rupture occurred 

in the coupon. The yield strength of the tensile coupons was approximately 50.5 ksi. The 

behavior of the coupons in tension was uniform, and for this reason only a typical Stress-

Strain Diagram is included in Figure 4.1, instead of all three coupons. The data from 
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 The presence of the reinforcing band over the crimp on the compression flange 

did not reveal any noticeable increase in the beam’s moment capacity, and Figure 4.6 

actually indicates a decline both in the beam’s ultimate moment capacity, and resistance 

to deflection. The ultimate moment was still found to be 35 kip-in for the beam, and the 

beam achieved this failure at 0.4 inches of deflection. The beam failed by folding around 

the crimp, but there was an additional failure in the reinforcing band. When in 

compression, the reinforcing band buckled over the point of crimping in the beam 

simultaneously with the folding around the crimp. 

4.4. 1.5 DEGREE CRIMP 

 The 1.5 degree bend crimp in the tension flange had roughly the same behavior as 

the 0.5 degree crimp in the tension flange, although the deflection at failure was larger. 

This similarity can be seen in Figure 4.7. The 1.5 degree crimped beams, both with and 

without the reinforcing band, had approximately the same ultimate moment capacity as 

the straight beam, 45 kip-in. The 1.5 degree crimp yielded at approximately the same 

amount of loading as the straight beam before it failed in local buckling in the pure 

bending zone. This behavior resulted in a higher deflection, approximately 38.5% more 

than the 0.5 degree crimp in tension. The deflection at ultimate loading was 

approximately 0.9 inches, compared to 0.3 inches for the straight beam.  
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5. DISCUSSION 

 The effects of the crimps on the moment capacity of the beam, and the deflections 

of the beams under loading were used to calculate the effective moment of inertia for the 

crimped beams. The effects of the reinforcing band on the moment capacity and the 

beam’s effective moment of inertia are also discussed. The results of the experimentation 

showed that as the indentation of the crimp increased the beam’s ultimate moment 

capacity and effective moment of inertia decreased. As the effective moment of inertia 

decreased, the amount of deflection that occurred from the same amount of applied 

moment increased. The amounts by which these properties decrease are discussed further. 

Tables 5.1 through 5.4 tabulate the effects of the different crimps had on the beam’s 

moment capacity and effective moment of inertia. Tables 5.5 through 5.7 and equations 2 

through 7 give information that can be used to predict the ultimate moment capacity of 

crimps other than 0.5, 1.5, or 3.0. This collection of tables will help with the safe design 

with crimped cold-formed steel C-section beams in the future. 

5.1 MOMENT CAPACITY 

 The goal of this research was to assess how the crimp affected the moment 

capacity, and deflection capacity of the crimped beams when compared to straight beams. 

The data showed that a small amount of crimping, such as 0.5, or 1.5 degree, on the 

tension face of the beam did not greatly reduce the moment capacity of the beam, 

although the deflection caused by the moment was increased. There was a general trend 

that the deeper the geometry of the crimp descends into the compression zone of the 

beam cross-section, the greater the loss of moment capacity. The 0.5 degree and 1.5 

degree crimps in the tension flange did not significantly affect the moment capacity of the 
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beam, but the 3.0 degree crimp in the tension flange did decrease the moment capacity. 

There was an observed reduction in moment capacity of 1% between the 0.5 and 1.5 

degree crimped beams in the tension flange, but the 3.0 degree crimped beam in the 

tension flange saw a 16% reduction in its moment capacity when compared to the 0.5 

degree crimped beam. This observation is further explored in Section 5.4. This trend also 

followed the reasonable result that the deeper the crimp in the compression zone, the 

greater the reduction in moment capacity. A tabulated list of beam types, their ultimate 

moment capacity, service moment capacity, and the ratio of the crimped beam’s moment 

capacity to that of a straight beam are presented in Table 5.1 below. 

 

 

Table 5.1 Moment Capacity of Beam Types 

 

 

 

 There was no significant increase in moment capacity from the presence of the 

reinforcing band of the 0.5 degree crimp or 1.5 degree crimped beams when the crimp 

Ultimate Moment Service Moment Ratio of Moment Capacity of

 Capacity (kip‐in)  Capacity (kip‐in) Beam to Straight Beam

Straight No 43.72 26.23 1.00

0.5/Compression No 32.79 19.67 0.75

0.5/Compression Yes 34.54 20.72 0.79

0.5/Tension No 45.47 27.28 1.04

0.5/Tension Yes 46.34 27.80 1.06

1.5/Compression No 21.42 12.85 0.49

1.5/Compression Yes 30.17 18.10 0.69

1.5/Tension No 45.03 27.02 1.03

1.5/Tension Yes 45.47 27.28 1.04

3.0/Compression No 14.43 8.66 0.33

3.0/Compression Yes 15.3 9.18 0.35

3.0/Tension No 38.04 22.82 0.87

3.0/Tension Yes 38.47 23.08 0.88

Beam Type Reinforcing Band
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was in the tension flange. This was demonstrated by the fact that the ultimate moment 

capacity for both of these beam types was 45 kip-in, regardless of whether the reinforcing 

band was present or not, as can be seen in Figure 4.5 and 4.7. This behavior probably 

occurred because the typical failure mode for these cases was local buckling in the 

compression flange and this failure mode is not restrained by the presence of a 

reinforcing band on the tension flange of the beam.   

In the case where a 0.5 degree crimp was placed in the compression flange then 

there was significant loss of moment capacity, which decreased from 45 kip-in for the 

straight beam to 35 kip-in. This was nearly a 25% reduction in moment capacity for the 

0.5 degree crimp in compression. When the band was present on the 0.5 degree 

compression crimp, then the data actually showed a decrease in moment capacity, 

although it was not significant. This probably occurs because the reinforcing band failed 

before the beam did, and its buckling preempted the failure of the beam. 

 When a 1.5 degree crimp was placed in the compression flange of the beam a 

more significant decrease in moment capacity took place, which dropped the moment 

capacity from 45 kip-in for a straight beam to 22.5 kip-in for the crimped beam. This 

amounted to a 50% reduction in moment capacity for a 1.5 degree crimp in the 

compression flange. This was a very significant drop in moment capacity. When the 

reinforcing band was present, then there was an increase in moment capacity up to 30 

kip-in. This was the only beam type in which a significant increase in moment capacity 

occurred from the presence of the reinforcing band. The reason appeared to be that the 

reinforcing band’s compression capacity was approximately the same as the compression 

capacity of the 1.5 degree crimp area, so that instead of the beam or the band failing 
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before the other, they shared the stress and allowed for a higher moment capacity before 

failure occurred. This is merely a hypothesis, and further research should be done to 

explain why this beam type was the one that increased its ultimate moment capacity when 

the reinforcing band was present. 

 When a 3.0 degree crimp was placed in the tension flange of the beam, then there 

was a reduction in the moment capacity from 45 kip-in to approximately 37.5 kip-in. This 

was approximately a 15% reduction in moment capacity for the 3.0 degree crimp in 

tension. This reduction in capacity in the 3.0 degree crimp beam occurred, because the 

stress of the 3.0 degree crimp extended deep enough into the beam that the locations 

under the crimp became a point of localized failure. When the 3.0 degree crimp was in 

the tension flange the geometry of the crimp was deep enough to extend into the 

compression zone of the beam. This caused local buckling to occur more quickly The 

presence of the band did not significantly increase the moment capacity of the beam, 

although in Figure 4.9, after the first drop in moment capacity occurred, a spike in 

moment capacity was observed. After the beam had failed in local buckling and the 

reinforcing band had not yet yielded, the reinforcing band took the stress from the beam, 

and allowed a momentary increase in the beam’s moment capacity before it buckled.   

 When the 3.0 degree crimp was placed in the compression flange of the beam, 

then its moment capacity was reduced to 15 kip-in from 45 kip-in. This was a 66% 

reduction in moment capacity for the 3.0 degree crimp in the compression flange 

compared to the straight beam. This reduction in moment capacity occurred because the 

deeper crimp geometry descended into the compression zone of the beam. The presence 

of the reinforcing band over the crimped area of the beam increased the moment capacity 
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by 7%. This increase in moment capacity could be attributed to the reinforcing band, 

which had not buckled like the rest of the beam due to the crimping process. 

 The general trend for the crimped beams was that the deeper the crimp geometry 

extended into the compression zone of the beam, the greater the loss in moment capacity. 

When the crimp was in the compression flange, it acted as a predetermined failure point. 

It was observed that the area around the crimp was weakest, and failure often occurred 

there. When the crimp was in the tension flange, the resulting tensile stresses uncrimped 

the tension flange and returned the beam to a relatively straight shape. If the tension 

flange crimp extended into the compression zone of the beam, such as the 3.0 degree 

tension crimp, then a loss of moment capacity occurred. The presence of the steel 

reinforcing band was found to have a minimal effect on the restoration of the lost moment 

capacity of the beam. The exception was when the 1.5 degree crimp was in the 

compression flange. In this instance, the steel reinforcing band did significantly increase 

the moment capacity of the beam.  

5.2 MOMENT OF INERTIA 

 For an accurate calculation of the expected deflection at service in design, the 

moment of inertia was necessary. The moment of inertia was calculated from the load and 

deflection data. The effective moment of inertia decreased as the crimp degree became 

larger. This trend was true for both the crimps in the compression flange and the tension 

flange. The moment of inertia was typically lower when the crimp was on the tension 

flange of the beam, compared to the compression flange. The presence of the reinforcing 

band increased the effective moment of inertia of the beam; however, the amount by 

which the band increased the moment of inertia of the beam was not consistent. The 
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effective moment of Inertia was calculated using service level loads before yielding 

began taking place. As the steel yields and strain-hardening begins, the modulus of 

elasticity decreases, so service level loads were used to avoid this change in the modulus 

of elasticity. Equation 1 was used to calculate the effective moment of inertia at each 

beam, depending upon its ultimate moment, and the amount of deflection that was seen at 

service level loads. The moment of inertia values for crimped beams and straight beam 

are given in Table 5.2. 

 

ܫ ൌ ଶܮ௨௟௧ሾ3ܯ0.6 െ  ሻ    (1)ߜܧଶሿ/ሺ24ݕ4

 

 

Table 5.2 Moment of Inertia by Beam Type 

 

 

 

Beam Type Reinforcing Band Moment of Inertia (in
4
) Itest/Istraight

Straight No 2.45 1

0.5/Compression No 1.87 0.76

0.5/Compression Yes 2.05 0.84

0.5/Tension No 1.72 0.70

0.5/Tension Yes 1.99 0.81

1.5/Compression No 1.75 0.71

1.5/Compression Yes 1.84 0.75

1.5/Tension No 1.29 0.53

1.5/Tension Yes 1.73 0.71

3.0/Compression No 0.99 0.40

3.0/Compression Yes 1.14 0.47

3.0/Tension No 0.5 0.20

3.0/Tension Yes 1.46 0.60
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 The strength reduction factors were determined by the relation of the crimped 

beams’ moment capacity to the moment capacity of the straight beam, which can be seen 

in Table 5.1. Based on the experimental results the strength reduction factors can be seen 

in Table 5.3. These values should be applied to the allowable yield moment capacity of a 

straight beam to account for the effect of the crimp in safe design. The strength reduction 

factors are based solely on the research, and further study should be done to refine these 

factors and verify that they are accurate. 

 

 

Table 5.3 Strength Reduction Factors 

 

 

 

5.3. DEFLECTION 

 For the deflections of the beams under service loads the general trend was that the 

deeper the crimp geometry descended into the beam the larger the amount of deflection 

that occurred for a given applied moment. Deflections were generally smaller at service 

loads if the crimp was in the compression flange of the beam. While the steel reinforcing 

band did not have a significant impact on the moment capacity of the beams, the band did 

generally decrease the amount of deflection that occurred at service loads. This was 

Curvature Tension Compression

Flange Flange

(degree) Crimp Crimp

0.5 1 0.75

1.5 1 0.5

3 0.86 0.33
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attributed to the increase in the effective moment of inertia that occurred because of the 

band. The tension flange crimp beams showed a higher deflection than the compression 

crimps because the tension stresses pulled the crimp out of the beam before significant 

amounts of load were carried. This allowed for large deflections early in the service life 

of the beam. 

 A minimum standard for the allowable deflections, L/180, was selected. For the 

experimentation length of 6 feet, this amounted to a maximum allowable deflection of 0.4 

inches at service loads. The service load was defined as the moment that was applied to 

the beam at 60% of the beams maximum moment capacity before failure. For the L/180 

criteria, the only beam type that did not pass was the 3.0 degree crimped beam in tension 

without the reinforcing band. This was not surprising because these beams had large 

displacements, and became nearly straight, before they took on a significant amount of 

load. At 0.87 inches, the 3.0 degree crimped beam’s deflection was more than double the 

allowable deflection. Based on this observation, use of the 3.0 degree crimp in the tension 

flange without a reinforcing band is not recommended. 

 Another beam that nearly failed the L/180 deflection limit of 0.4 inches was the 

1.5 degree crimp in tension without the reinforcing band. This beam type had service 

deflections of 0.397, barely passing the allowable limit. Because of this, the use of the 1.5 

degree crimp in tension without the band is also not recommended. 

 An intermediate deflection limit of L/240, or 0.3 inches, was used to further 

assess the restrictions on the use of these beams. Several more beam types failed this 

requirement, and a common occurrence in the experimentation phase was that one test of 

the beam type would fail this requirement, but the other test passed the requirement. If 



www.manaraa.com

34 
 

 
 

the average of the two beams’ deflections at service load was below the requirement, then 

the beam was stated to have passed the requirement. The beam types that failed the L/240 

requirement were: 0.5 degree crimp in tension without the reinforcing band, the 1.5 

degree crimp in tension both with and without the band, and the 3.0 degree crimp in 

tension both with and without the reinforcing band. The beams would become nearly 

straight before resisting a significant amount of load, and as a result revealed large 

deflections during experimentation. Based on the observation that most beams failed in 

deflection when compared to an allowable deflection of L/240, it is recommended not to 

use similar beams for applications requiring allowable deflections smaller then L/180. 

 For the instance of strict deflection requirements, a maximum deflection of L/360, 

0.2 inches for the experiment, was selected. The 0.5 degree crimp in compression with 

the reinforcing band and the 1.5 and 3.0 degree crimp in compression, both with and 

without the reinforcing band, passed this requirement. The beams passed the L/360 

service load deflection because of their low ultimate moment capacity, thus decreasing 

the beam’s moment of inertia that occurred from the crimps. The 0.5 crimp in 

compression with the reinforcing passed due to its increased moment of inertia that the 

reinforcing band provided. The straight beam narrowly failed due to its high moment to 

and it exceeded its allowable deflection. A list of beam types and their deflection criteria 

results are shown in Table 5.4. These beam deflection criteria results will change for 

different beam lengths.  
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Table 5.4 Deflection Criteria Results 

 

 

 

5.4 MOMENT CAPACITY EQUATIONS FOR CRIMPED BEAMS 

All of the failures that occurred in the crimped beams during testing occurred in 

the compression flange. Because of this, the compression stress was critical regardless of 

whether the crimps were placed in the tension or compression flange. If the crimps were 

in the tension flange, then the moment capacity was not significantly affected, unless the 

crimp was 3.0 degrees which resulted in the crimp’s geometry continuing deep into the 

web of the beam. This reoccurring mode of failure led to the hypothesis, the decreased 

moment capacity occurred specifically because the crimp’s geometry interfered with the 

stress distribution in the compression zone of the web and the compression flange of the 

beam. To test this hypothesis, measurements were taken of the different sections of the 

crimp. The crimp geometry was separated into its “a”, “b”, and “c” dimensions. Table 5.5 

and Figure 5.1 illustrate different parts of the crimp geometry and its sizes depending 

upon the crimp degree.  

Beam Type Reinforcing Band Service Deflection (in) L/180 (0.4 in.) L/240 (0.3 in.) L/360 (0.2in.)

Straight No 0.2 Pass Pass Fail

0.5/Compression No 0.194 Pass Pass Fail

0.5/Compression Yes 0.19 Pass Pass Pass

0.5/Tension No 0.302 Pass Fail Fail

0.5/Tension Yes 0.264 Pass Pass Fail

1.5/Compression No 0.14 Pass Pass Pass

1.5/Compression Yes 0.19 Pass Pass Pass

1.5/Tension No 0.397 Pass Fail Fail

1.5/Tension Yes 0.302 Pass Fail Fail

3.0/Compression No 0.16 Pass Pass Pass

3.0/Compression Yes 0.154 Pass Pass Pass

3.0/Tension No 0.86 Fail Fail Fail

3.0/Tension Yes 0.301 Pass Fail Fail
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Table 5.6 Compression Zone Size 

 

 

 

Where    

%a = % of dc that is occupied by a 

%B = % of dc that is occupied by B 

%C = % of dc that is occupied by C 

dc = depth of the compression zone 

ܤ ൌ ܽ ൅ ܾ	 

ܥ ൌ ܽ ൅ ܾ ൅ ܿ  

Different combinations of crimp geometry were paired to find a correlation, and 

the best correlation which illustrated the relationship was between the ultimate moment 

capacity and the percent amount that the B dimension penetrated in to the compression 

zone of the beam’s web. The larger the amount of the B dimension that was in the 

compression zone, the lesser the ultimate moment capacity of the beam. Figure 5.2 below 

shows this correlation between the B dimension in the compression zone and the 

corresponding ultimate moment capacity. Equation 2 was developed to predict the 

Compression Zone Average Maximum Moment
size (in) %a %B %C Moment (kip-in)

0/NA 2.35 0 0 0 43.72
0.5/tension 2.93 0 0 0.02 45.56
0.5/tension Yes 2.73 0 0 0.00 46.21
1.5/tension 3.34 0 0 15.07 45.02
1.5/tension Yes 2.92 0 0 2.92 45.68
3/tension 4.39 0 0 44.61 38.08
3.0/tension Yes 2.92 0 0 16.54 38.46
0.5/compression 2.27 5.80 44.38 100.00 32.85
0.5/compression Yes 2.26 5.83 44.62 100.00 34.52
1.5/compression 1.84 9.70 53.58 100.00 21.41
1.5/compression Yes 2.23 7.99 44.15 100.00 30.20
3.0/compression 2.06 17.39 49.57 100.00 14.39
3.0/compression Yes 1.96 18.31 52.18 100.00 15.39

mpression zone that is affected by the dim
Beam Reinforcing Band
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ܤ% ൌ 100%ቀ1 െ ௗ೎ି஻

ௗ೎
ቁ     (4) 

 

݀௖ ൌ
ௗఙ೎

ሺఙ೤ାఙ೎ሻ
 (5) 

 

 The amount of crimp geometry that is present in the compression zone of the 

beam depends on whether or not the crimp is in the tension or compression flange. If the 

crimp is in the tension flange, then a large crimp degree is necessary to reach the 

compression zone, but if the crimp is in compression flange, then the crimp immediately 

disrupts the stress in the compression zone and decreases the ultimate moment capacity 

of the beam. Figure 5.3 shows the correlation between the B dimension and moment 

capacity of the crimped beam if the crimp is located in the tension flange of the beam. 

Equation 6 was developed to predict the moment capacity of a beam if the crimp was 

placed in the tension flange depending on the degree of the crimp. 
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ܼ ൌ 	െ1 ൅ ሺ௥
஺
ሻሾሺܾ௢ᇱ ൅ ௪ሻݐ lnሺݎ௢ሻ െ ሺܾ௜

ᇱ ൅	ݐ௪ሻ lnሺݎ௜ሻ െ ܾ௢ᇱ lnሺݎ௢ െ ௪ሻݐ ൅ ܾ௜
ᇱ lnሺݎ௜ ൅	ݐ௪ሻሿ 

(8) 

 

This parameter Z is then used in the Winkler-Bach equation to calculate the stress 

in the curved beam. Table 5.7 shows the result of these calculations, where fb is the stress 

in the curved beam. 

 

 

Table 5.7 Winkler-Bach Curved Beam Results 

 

 

 

The M in the table is the moment that was applied to the curved beam’s crimped 

counterpart. When compared to the stresses that were seen by the crimped beams in Table 

5.4, the amount of stress that was expected in a similar curved beam was low. Upon 

further review of the Winkler-Bach equations, it was determined this equation was used 

for curved beams that possessed larger cross-sectional areas than the 600S162-54 beam, 

as well as a much smaller radius of curvature. The Winkler-Bach equation was also 

applied to cross-sections that were less slender and thus less prone to local buckling. For 

Beam bf  (in) af i (in) af o tf Z M(kip-in) fb (ksi)

0.5C 1.5684 685 691 0.0566 -0.0699 33.685 0.135

1.5C 1.5684 227 233 0.0566 -0.0698 25.802 0.345
3.0C 1.5684 111 117 0.0566 -0.0695 14.889 0.470
0.5T 1.5684 685 691 0.0566 -0.0699 45.886 0.162
1.5T 1.5684 227 233 0.0566 -0.0698 45.352 0.416
3.0T 1.5684 111 117 0.0566 -0.0695 38.267 0.549
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this reason, the Winkler-Bach equation was found to be a poor predictor of the moment 

capacity of a curved 600S162-54 CFS beam.  

5.5.2. Curved Beam Circumferential Stresses. This method evaluates the 

circumferential stress of a curved beam by using a parameter, Am, which is determined by 

the integral of the change in area over the radius of the beam.  

 

௠ܣ ൌ ׬	  (9)     ݎ/ܣ݀

 

The Am formula can be used on many different cross-sections to evaluate their 

stress at applied moments, and is therefore applicable to any cross-section that could be 

simplified to geometric shapes. With this general applicability, the circumferential stress 

equation was employed to evaluate the stress of curved beams that were similar in cross 

section and applied moments to their crimped counterparts. The results of the 

circumferential stress equation can be seen in Table 5.8. 

 

 

Table 5.8. Circumferential Stress in Curved Beams 

 

 

 

Beam A (in2)
af i af o Am (in) R (in) M (kip-in) σθθ inner (ksi) σθθ outer (ksi)

0.5C 0.556 685 691 0.0030 688 33.685 -0.088 -0.088
1.5C 0.556 227 233 0.0089 230 25.802 -0.201 -0.203
3.0C 0.556 111 117 0.0180 114 14.889 -0.233 -0.237
0.5T 0.556 685 691 0.0030 688 45.886 -0.120 -0.120
1.5T 0.556 227 233 0.0089 230 45.352 -0.353 -0.356
3.0T 0.556 111 117 0.0180 114 38.267 -0.598 -0.609
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 Like the Winkler-Bach equation, this method also predicts low compression stress 

values. When compared to experimental results they were found to have a poor 

correlation to the predicted values. Because of these values and similar past examples, the 

conclusion was made that this method was also intended for beams with cross-sections 

with larger areas, and a much smaller radius of curvature. This method also doesn’t take 

into account the effect of local buckling that occurs in slender members, so for this 

reason, the circumferential stress equation was found to also be a poor predictor of the 

stress in a curved 600S162-54 CFS beam. 

 
 



www.manaraa.com

46 
 

 
 

6. CONCLUSION 

 A small amount of crimping such as the 0.5 or 1.5 degree crimp in the tension 

flange did not significantly affect the ultimate moment capacity of the beam. The 3.0 

degree crimp in the tension fiber reduced the moment capacity somewhat, but the loss of 

capacity was smaller than if the crimp was placed in the compression fiber of the beam. If 

the crimp was placed in the compression flange of the beam, then losses accumulated 

quickly, with the 0.5 degree crimp failing at 75% of the straight beam’s moment capacity, 

the 1.5 degree crimp failing at 50% of the straight beam’s moment capacity, and the 3.0 

degree crimp failing at 33% of the straight beam’s moment capacity. The presence of the 

reinforcing band was found to have minimal effect on the ultimate moment capacity 

except for the 1.5 degree crimp in compression. This increase was neglected in the 

strength reduction factors in Table 5.3.  

 The crimping process resulted in larger deflection at service level loads for all 

beams, when compared to straight beams. The larger deflections were a result of the 

decrease in the beam’s effective moment of inertia from the crimps in the beam. Larger 

crimping degrees resulted in greater losses in the effective moment of inertia. The 

presence of the reinforcing band over the crimp did increase the beam’s effective moment 

of inertia, and therefore decreased the amount of deflection at service level loads. For this 

reason, it is advised to use the reinforcing band if excessive deflection is a concern. 

Crimped beams can be used in design, but their use should include the appropriate 

strength reduction factor from Table 5.3 to account for their decreased moment capacity 

compared to the straight beam, and should take into account the appropriate deflection 

requirement for the application. 
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7. FUTURE RESEARCH 

 This research served as the initial steps for a better understanding of the behavior 

of crimped cold-formed steel beams, with a focus specifically on the crimp size and the 

presence of the reinforcing band. Additional factors should be considered if and when 

additional tests are to be performed. The additional considerations include variable rivet 

spacing, axial forces, and other crimp sizes. 

 Future research should be a broader study of the geometry of the cross-section. 

Different material thicknesses should be used and other beam depths should be crimped 

and evaluated to study how the crimp changes the ultimate moment capacity, and the 

effective moment of inertia of the beam. 

 The rivets restraining the reinforcing strap were randomly placed, and this 

randomness created smaller and larger distances of the strap that were not restrained 

against the beam. The larger unrestrained sections could allow for premature buckling of 

the member. It is recommended a study should be done based on the distance between 

rivets that restrain the reinforcing strap to the member is limited to a certain distance, and 

then the extent to which the varying distance between rivets affects the moment capacity 

can be ascertained. 

 An unexplained phenomenon is the fact that the only beam that saw an increase in 

moment capacity is the 1.5 degree crimp in the compression fiber. A reasoning for this 

was presented showing that the increased moment capacity occurred because of the 

movement of the neutral axis and subsequent change in compressive stress. While this 

showed the reasoning for the increased moment capacity, it did not explain why this 

moment capacity increase only occurred in the 1.5 degree crimp in the compression 
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flange. Further research should be conducted to ascertain the reason for the moment 

capacity increase. 

 The members only experienced bending forces during the testing for this research. 

In the field, during construction and during service, these members would also experience 

axial forces and shear stresses. Experimentation in the presence of axial forces along with 

bending stress and shear stress should be conducted to assess how these forces would 

interact under various combinations of axial and bending loads. Both tensile and 

compressive loads should be tested with the crimp in the compression fiber and tension 

fiber. The inclusion of axial loads on these members could change the strength and 

serviceability capacities of these members greatly. 

 Further testing should be done on intermediate crimp sizes between 0.5, 1.5 and 

3.0. The equations that were presented in Section 5.4 should be compared with the tested 

values that are gained from further testing, and the equations should be refined to better 

represent the moment capacity as it changes with the size of the crimps. 

 The manufacturer indicates that the degree bends can be as high as 7.0 degrees, so 

beams with deeper indentations should be assessed for their strength and serviceability 

under structural loads. The manufacturer also constructs with crimped beams that have 

large holes punched in the web of the beam. This is done to allow bracing, wiring and 

other construction necessities to pass through the member, but it also reduces the strength 

and serviceability capacities of the beams further. The effect of these holes should be 

assessed as an additional variable to understand how they interact with the crimp 

geometry to affect the capacity of the beams. 
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APPENDIX A 

 
MOMENT-DEFLECTION GRAPHS – ALL BEAM TYPES 
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APPENDIX B 

 
Derivation of Equations 
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Derivation of Equation (1) 

Assumptions 

 The two point loads in the experiment were perfectly equal 

 The two point loads in the experiment were perfectly symmetrically spaced 

Begin with Simple beam – Two Equal Concentrated Loads Symmetrically Placed 

Deflection Equation. 

ߜ ൌ ൬
ܲܽ
ܫܧ24

൰ ሺ3ܮଶ െ 4ܽଶሻ 

Multiply both sides by I 

ܫߜ ൌ ൬
ܲܽ
ܧ24

൰ ሺ3ܮଶ െ 4ܽଶሻ 

Divide both sides by Δ 

ܫ ൌ ൬
ܲܽ
ܧߜ24

൰ ሺ3ܮଶ െ 4ܽଶሻ 

Assume that Moment of Inertia under service loading is constant, and does not cause 

yielding in the member. Moment at Service loading is 60% of ultimate Moment Capacity. 

௨௟௧ܯ ൌ ܲܽ 

௦௘௥௩௜௖௘ܯ ൌ  ௨௟௧ܯ0.6

Combine these equations to get calculation for Moment of Inertia at Service loading. 

ܫ ൌ ௨௟௧ܯ0.6
ሾ3ܮଶ െ ଶሿݕ4

ߜܧ24
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Solve for dc 
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Derivation of Equation (6) and (7) 

These equations were created to be a fit to the experimental data points that would predict 

the capacity of intermediate crimp degrees. These equations should be verified with 

future testing and research. 
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